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1 KKT Optimality Condition

1.1 Benefit of Strong Duality

Example 1.1. (Dual norm of dual norm is the primal norm.) Define dual norm of x ∈ Rn w.r.t. ‖ · ‖ is

‖x‖∗ = sup‖z‖61 z>x. Prove that

‖x‖∗∗ = ‖x‖.

Proof. Consider a trivial problem (given x),

min
y
‖y‖,

s.t. y = x

where the optimal value p∗ = ‖x‖. Let

L(u,ν) = ‖y‖+ ν>(x− y) = ‖y‖ − y>ν + x>ν.

Thus, Lagrange dual function is

g(ν) = inf
y

L(y,ν) =

 x>ν, ‖ν‖∗ 6 1,

−∞, otherwise.

Then the dual problem is

max
ν

x>ν,

s.t. ‖ν‖∗ 6 1.

According to the definition of dual norm and strong duality, then ‖x‖∗∗ = ‖x‖. �

Example 1.2. (Dual Gradient Ascent) Consider

min
x

f (x),

s.t. c(x) = 0.
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Lagrangian: L(x,ν) = f (x) + ν>c(x). Thus,

g(ν) = inf
x

L(x,ν) = L(x∗(ν),ν).

The dual problem is

max
ν

g(ν).

Because we have

∇g(ν) =
∂L
∂x∗

∂x∗

∂ν
+

∂L
∂ν

= c(x),

where ∂L
∂x∗ = 0. Based on that, the dual gradient assent algorithm is

Step 1: xt = arg min
x

L(x,ν t), (1)

Step 2: ν t+1 = ν t + stc(xt)). (2)

1.2 Karush-Kuhn-Tucker Conditions

Theorem 1.3. Suppose that primal problem is convex, (x∗,λ∗,ν∗) are any points that satisfies the KKT conditions,

then x∗ and (λ∗,ν∗) are primal and dual optimal with zero dual gap.

Proof. KKT conditions tell us that x∗ is primally feasible, namely fi(x∗) 6 0 and hj(x∗) = 0. Since λ∗ � 0,

then L(x,λ∗,ν∗) is convex in x. Thus, the condition ∇ f0(x∗) + ∑i λ∗i ∇ fi(x∗) + ∑j ν∗j ∇hj(x∗) = 0 indicates

x∗ minimizes L(x,λ∗,ν∗) over x. Therefor,

g(λ∗,ν∗) = L(x∗,λ∗,ν∗) = f0(x∗) + ∑
i

λ∗i fi(x∗) + ∑
j

ν∗j hj(x∗) = f0(x∗).

This means the zero dual gap. Obviously, (x∗,λ∗,ν∗) are primal and dual optimal points. �

Example 1.4. (Support Vector Machine)

Given a data set {(xi, yi)|xi ∈ Rd, yi ∈ {−1, 1}, i = 1, . . . , n}, how to construct a linear classifier if the data

set is separable?

The basic idea is that we can use Separation Hyperplane Theorem to construct the classifier.

Recall that

Theorem 1.5. Suppose that there are two convex sets C and D satisfies C ∩ D = ∅. Then there exists a 6= 0 and b

such that

a>x− b 6 0 for any x ∈ C, and a>x− b > 0 for any x ∈ D. (3)
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Proof. Let p, q be the two pints which achieve

min
x∈C,y∈D

‖x− y‖ = ‖p− q‖.

Then the hyperplan separates C and D is

〈
p− q, x− p + q

2

〉
= 0,

that is

〈p− q, x〉 − 1
2
〈p− q, p + q〉 = 0.

Thus, a = p− q and b = 1
2 〈p− q, p + q〉 . �

Let us go back to the SVM example. According to the hyperplane separation theorem, we can construct the

linear classifier by the following three steps:

• Step 1: Construct a positive and negtive convex hull

C+ = {x|x = ∑
yi=1

αixi, ∑
yi=1

αi = 1, 0 6 αi 6 1},

C− = {x|x = ∑
yi=−1

αixi, ∑
yi=−1

αi = 1, 0 6 αi 6 1}.

• Step 2: Find p and q for C+ and C−.

• Step 3: set a = p− q and b = 1
2 〈p− q, p + q〉, we have the linear classifier y = a>x + b.

Q: How to find p and q? To this end, we need to find the optimal solution of the following optimization

problem:

min
α,β

1
2
‖ ∑

yi=1
αixi − ∑

yi=−1
βixi‖2,

s.t. ∑
yi=1

αi = 1, 0 6 αi 6 1,

∑
yi=−1

βi = 1, 0 6 βi 6 1.

However, finding the optimal solution of the above optimization problem is relatively hard. Then in the

machine learning community, another method called “maximal margin” approach that has been widely

used to find the “optimal” linear classifier. The fundamental idea is to find two parallel hyperplanes (see

Figure 1) which can separate the positive and negative point set with the maximal distance (margin).
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Figure 1: Support Vector Machine

With loss of generality, assume that the two parallel hyperplanes are 〈w, x〉+ b = 1 and 〈w, x〉+ b = −1.

Then the maximal margin means

max
w,b

d =
2
‖w‖ , (4)

s.t. yi(〈w, xi〉+ b) > 1, i = 1, . . . , n. (5)

It is equivalent to

min
w,b

1
2
‖w‖2, (6)

s.t. yi(〈w, xi〉+ b) > 1, i = 1, . . . , n. (7)

Lagrangian:

L(w, b, α) =
‖w‖2

2
−∑

i
αi[yi(〈w, xi〉+ b)− 1].

KKT conditions:

∇wL(w, b, α) = w−∑
i

αiyixi = 0, (8)

∇bL(w, b, α) = −∑
i

αiyi = 0, (9)

αi > 0, (10)

yi(〈w, xi〉+ b) > 1, (11)

αi[yi(〈w, xi〉+ b)− 1] = 0. (12)

So, it has w∗ = ∑i α∗i yixi, then the linear classifier is y = 〈w∗, x〉+ b∗ = ∑i α∗i yi 〈xi, x〉+ b∗. The point xi is

called the support point due to αi 6= 0. αi 6= 0 also indicates that point i lies on the support hyperplane. Take
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w∗ = ∑i α∗i yixi into the Lagrangian, we have the Lagrange dual problem:

max
α
− 1

2 ∑
i,j

αiαjyiyj
〈
xi, xj

〉
+ ∑

i
αi

s.t. αi > 0,

∑
i

αiyi = 0.

The primal and dual problems are convex, and the dual problem is quadratic.
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